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Classi�cation power system
stability (Reminder)

Proposed de�nition:

Power system stability is the ability of an electric power system, for a given
initial operating condition, to regain a state of operating equilibrium after

being subjected to a physical disturbance, with most system variables
bounded so that practically the entire system remains intact. [2]

―――
[1] Hatziargyriou, Nikos, et al. "De�nition and classi�cation of power system stability–revisited & extended." IEEE Transactions on Power Systems 36.4 (2020): 3271-3281. 2 / 43



Principle of transient stability

Consider a generator bus connected through a transformer to a in�nite bus
system (  is an ideal voltage source).

The mechanical power delivered through the shaft is .

The electrical power delivered to the grid is denoted .

In steady-state, the synchronous machine is modelled as a constant voltage
source  behind its transient reactance .

Finally,  is the leackage reactance of the transformer.

 = V  V̄ B B
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Reminder

Consider a simple radial system.

Assuming no transmission-line losses:

If we de�ne , we have:
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The electrical power  is expressed as follows:

At equilibrium, . For given reactances and voltage sources, one has:

When we increase , the electrical angle at equlibrium also increases. The

maximum value is reached for .
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There exist TWO equilibrium points for . Only ONE for ,

and NONE for .

Question: What happens if ?

In synchronous machines, the rotor rotates at the same angular speed as the

magnetic �eld produced by the stator. If we denote  the rotor angular speed and

 the synchronous speed, then .

The �eld produced by the rotor and the stator tend to align. If they are not aligned,

an electromechanical torque is produced. This misalignment is represented by the

electrical angle. A greater angle induces a larger torque. BUT if the angle is too
large, the machine loses synchronism and the torque becomes 0.

P ∈ [0, 10)m P  = 10m

P  > 10m

P  > 10m

ω  m

ω  = 2πf  s s ω  = ω  m s

―――
[2] Lectures given by Prof. Thierry Van Cutsem https://thierryvancutsem.github.io/home/courses.html 6 / 43
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Consider this equation:

with , , ,  and various values of

.

P  =  sin(δ)e
X  + X  + X  /2tr d

′
L

E V  

′
B

E = 1.1′ V  = 1B X  = 0.8tr X  = 0.4d
′

X  = [0.5, 1, 3]L
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Let us consider the following sequence of actions:

1. Pre-fault conditions; the impedance between generators and the in�nite bus

system is  pu.

2. During-fault conditions; one line is short-circuited, the impedance becomes 

pu.

3. Post-fault conditions; the short-circuit is cleared by disconnecting a line, the

impedance becomes  pu.

For the system to be stable, the system has to stabilize at  after the fault

occured.

We will now look at how the system moves from the equilibrium point  to

equilibrium point 

j0.5

j3

j1

δ = δ  2

δ  1

δ  2
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Swing equation
Let us de�ne the following quantities;  is the moment-of-inertia of the

rotational system,  is the mechanical torque,  is the electrical torque,  is

the rotor speed and  the rotor angle (in mechanical radians). Using Newton's

Second Law, one has:

Multiplying both sides by  (the rotor speed), one has:

We then de�ne

where  is the synchronous speed (in mechanical radians/s),  the

nominal rated size of the generator.  is de�ned in seconds, and takes a value in

a range of 3-11s for turbo-alternators, and in a 1-2s range for hydro generators.

J  m
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m e
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One can write the swing equation by substituing  by :

where  and  are in per-unit of the generator MVA base. One can also write

the equation in the system base :

with

Finally, we make the reasonable assumption that , and we express

everything in terms of electrical radians.

J  m H  gen

 2H   = P  − P  (
ω  syn,m

2

ω  m ) gen
dt2

d δ  

2
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P  m P  e
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2

ω  m )
dt2
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2
m
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  = P  − P  (
ω  syn

2H )
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d δ2
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―――
[3] Mohan, N. (2012). Electric power systems: a �rst course. John Wiley & Sons. 10 / 43



What can we say about the swing equation?

If the mechanical power provided at the shaft  is greater than the electrical

power transferred to the network , the machine accelerates

, where  is the deviation from the synchronous speed

.

It decelerates if the electrical power is greater than the mechanical power.

The acceleration is proportional to the machine inertia  = time it takes for

the machine to reach its nominal speed if the mechanical power provided at

the shaft is .

What is the inertia of PV panels?

P  m

P  e

 =  > 0
dt2
d δ2

dt
dΔω Δω

ω  syn

H

S  system
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Transient stability using Equal-Area Criterion

Swing equation:

Rearranging the terms and multiplying both sides by :

Applying change of variables , and integrating both sides between  and an

arbitrary angle :

Assume  being an equilibrium point, i.e. , we have:
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The left term  represents the kinetic energy of the machine at an

arbitrary angle  (with respect to the synchronous speed )  rotational

kinetic energy:  with  the moment-of-inertia and  the angular speed.

As long as , the machine gains kinetic energy and accelerates. For

the system to stabilize, it must exist an angle  at which the kinetic energy

becomes 0, and thus:

Let us consider the following system; at time  and angle , a short-circuit occurs

and is cleared at time  and angle  by tripping the line.

 = Δω(
dt
dδ )

2 2

δ∗ ω  syn →
 Jω2

1 2 J ω

P  > P  m,pu e,pu

δ  m

 P  − P  dθ = 0∫
δ  0

δ

( m,pu e,pu)

t δ  0

t + t  cl δ  cl
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For a stable system, we highlighted that:

For our little example, one can write the same condition:

During the �rst part (Area A), the machine accelerates. After the fault (Area B), the

machine decelerates and the net acceleration becomes 0. At angle , there is still

a mismatch between the electrical power and the mechanical power, thus the

machine swings back (from  to ).

 P  − P  dθ = 0∫
δ  0

δ

( m,pu e,pu)

 −  = 0

Area A

  P  − P  dθ∫
δ  0

δ  cl

( m,pu e,fault,pu)

Area B

  P  − P  dθ∫
δ  cl

δ  m

( e,post−fault,pu m,pu)

δ  m

δ  m δ  2
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Without any damping (kinetic energy losses), the system oscillates inde�nitely

between angle  and .

However, in a real system, the damping would cause the machine to settle down at

an angle  (new equilibrium point).

Synchronous machines have damper windings . In perfect steady state, the

magnetic �elds produced by both the stator and the rotor are �xed relative to the

rotor so there is no current in the dampers. On the other hand, if the rotor moves

with respect to the magnetic �eld, the current induced in the dampers create a
damping torque according to Lenz's law.

δ  2 δ  m

δ  1
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Critical Clearing Angle

Let us come back to our de�nition of stability for our little system:

What are the conditions to ensure there exists  such that Area A = Area B?

We introduce the concept of critical clearing angle . Past this point, Area A will

always be greater than Area B, such that the system cannot stabilize. We associate
the critical clearing time  to the critical clearing angle, i.e. the maximum time

allowed to clear the fault before the system gets unstable.

 −  = 0

Area A

  P  − P  dθ∫
δ  0

δ  cl

( m,pu e,fault,pu)

Area B

  P  − P  dθ∫
δ  cl

δ  m

( e,post−fault,pu m,pu)

δ  cl

δ  cct

CCT
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Visual representation

Mathematical formulation

One has to determine the angle  such that , and the angle

 such that . Then solving this equation gives . Finally,

using the swing equation , one can determine the critical clearing time , i.e.

the time needed to reach the angle .

 −  = 0

Area A

  P  − P  dθ∫
δ  0

δ  cct

( m,pu e,fault,pu)

Area B

  P  − P  dθ∫
δ  cct

δ  max

( e,post−fault,pu m,pu)

δ  max P  = P  e,post−fault m

δ  0 P  = P  e,pre−fault m δ  cct

CCT

δ  cct
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Practical Example
Let us consider the following system:

and the following data:

and

X  = 0.3,X  = 0.5,X  = 1,X  = 0.5,X  =  ,X  =  d
′

tr l 21 22 6
1

23 3
1

 = 1e ,  = 1eĒt
jπ/6 ĒB

j0
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Equivalent

We can derive the following equivalent:

where

The power transfer from the machine to the in�nite-bus system takes the following

form:

X  = X  + X  +  = 1.3T tr d
′

X  + X  + X  + X  21 22 23 l

X  X  + X  + X  l ( 21 22 23)

P =  sin δ
X  T

E E  

′
B

19 / 43



Find ,  and 

1. Current from  to 

2.  is the same as the one from  to 

3. Find 

4. Initially, the system is at equilibrium.

In the following, we will compute the maximum power outputs for three different

conditions: Pre-fault, During-Fault and Post-Fault. It will allow us to determine the

3 different  curves.

Ē′ P  e P  m

 Ēt  ĒB

 =  Ī t→B
jX  − jX  T d

′

 −  Ēt ĒB

 Ī t→B E′¯
 Ēt

= jX   +  = 1.05095eĒ′
d
′ Ī t→B Ēt

j38.2057/180

P  e

P  =  = 0.5e 1.3
1.05095 1  sin(38.2057/180)

P  = P  = 0.5m e

P − δ
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Pre-fault condition

We compute the maximum power output while assuming  does not change.

If the transient stability study lasts a second or less, it is reasonable to consider, as a

�rst-order approximation, that the exciter of the synchronous machine cannot

respond in such short amount of time. Hence,  does not change

Maximum power output:

E′

E′

 =  = 0.808P̂ e,bf
X  T

E E  

′
B
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During-fault condition

A short-circuit occurs between lines  and . The circuit topology changes and is

depicted below.

22 23
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We can derive the following Thevenin's equivalent

where

and

and then get the maximum power output:

 =  = 0.478eĒth E′¯
X  + X  + X  + X  d tr 21 22

X  + X  21 22 j38.206/180

X  =  = 0.364th
 +  

X  +X  

d
′

tr

1
X  +X  21 22

1

1

 =  = 0.35P̂ e,df
X  + X  th l

E  E  th B
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Post-fault condition

The line  is tripped to clear the short-circuit.

The impedance of the path connecting the machine to the in�nite-bus system

becomes .

The maximum power output is:

2

X  + X  + X  = 1.8d
′

tr l

 =  = 0.584P̂ e,pf
X  + X  + X  d

′
tr l

E E  

′
B
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The �nal  curves are shown here under:

with

P − δ

δ  = arcsin  = 0.667, δ  = arcsin  = 1.028, δ  = 2.1141 (
 P̂ e,bf

P  m ) 2 (
 P̂ e,pf

P  m ) max
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Critical clearing angle 

Area A

Area B

δ  cct

 =  

Area A

  P  − P  dθ∫
δ  0

δ  cct

( m,pu e,fault,pu)

Area B

  P  − P  dθ∫
δ  cct

δ  max

( e,post−fault,pu m,pu)

  

 P  − P  dθ∫
δ  0

δ  cct

( m,pu e,fault,pu) = P  δ  − δ  −   sin θdθm,pu ( cct 0) ∫
δ  0

δ  cct

P̂ e,df

= P  δ  − δ  +  cos δ  − cos δ  m,pu ( cct 0) P̂ e,df ( cct 0)

  

 P  − P  dθ∫
δ  cct

δ  max

( e,pf ,pu m,pu) = P  δ  − δ  −  sin θdθm,pu ( cct max) ∫
δ  cct

δ  max

P̂ e,pf

= P  δ  − δ  +  cos δ  − cos δ  m,pu ( cct max) P̂ e,pf ( cct max)
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Equal-area criterion

We can �nd out the critical clearing angle.

 

Area A

P  δ  − δ  +  cos δ  − cos δ  m,pu ( max 0) P̂ e,df ( cct 0)

= Area B

=  cos δ  − cos δ  P̂ e,pf ( cct max)

cos δ  =  cct
 −  P̂ e,df P̂ e,pf

P  δ  − δ  +  cos δ  −  cos δ  m,pu ( 0 max) P̂ e,df 0 P̂ e,pf max
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The purple star corresponds to , and the dashed purple line shows

the evolution of the angle . Even without damping, the system stabilizes at

 since the kinetic energy reaches 0 at that point ( )

δ  = 0.8938cct

δ

δ = δ  max Δω = 02
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Estimation of the critical clearing time 

In order to �nd the critical clearing time, one would need to solve the swing

equation:

where  is a non-linear function depending on ;

, and with  changing non-continuously with time.

We would need to solve a non-linear differential equation, which is not an easy

task!

Thus, let us assume that the acceleration  is constant over time. We have:

where  is the constant acceleration and  the initial speed assumed to be 0.

Let us assume two cases:

1. We pick the maximum acceleration for angles in .

2. We pick the minimum acceleration for angles in .

CCT

  = P  − P  (δ(t))(
ω  syn

2H )
dt2

d δ(t)2

m,pu e,pu

P  (δ(t))e,pu δ

P  (δ(t)) = K(t) sin(δ(t))e,pu K

 dt2
d δ(t)2

δ  = δ  + Δω   CCT + a  cct 1 0 2
CCT 2

a Δω  0

[δ  , δ  ]1 cct

[δ  , δ  ]1 cct 29 / 43



From the following �gure

it is clear that the acceleration is maximum for , and minimum for 

for  (larger power mismatch when  and smaller for ).

We have:

δ = δ  1 δ = δ  cct

δ ∈ [δ  , δ  ]1 cct δ = δ  1 δ = δ  cct

a =  P  −  sin δ  min 2H
ω  syn ( m,pu P̂ e,df cct)

a  =  P  −  sin δ  max 2H
ω  syn ( m,pu P̂ e,df 1)
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With s, we can derive a lower and an upper bound for the critical clearing

time .

If the actual clearing time is denoted , we can conclude that:

1. If , the system is unsafe!

2. If , the system is safe!

3. If , we have no guarantee if the system is safe or

not.

H = 4.5
CCT

CCT  =  =  = 239msmax  

a  min

2 δ  − δ  ( cct 1)
 

7.93
2 0.8938 − 0.667( )

CCT  =  =  = 214msmin  

a  min

2 δ  − δ  ( cct 1)
 

9.89
2 0.8938 − 0.667( )

t∗

t > CCT  

∗
max

t < CCT  

∗
min

CCT  < t < CCT  min
∗

max
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Extension on dynamics

Swing equations with damping coef�cient

Euler discretization

where  is the time step and where we explicitly denote that  is changing

over time in a discretize fashion (pre-fault during-fault post-fault) through the

superscript .

 =  P  − P  (t) sin(δ(t)) − DΔω(t)
dt

dΔω(t)
2H
1

( m e,max )

 = ω  Δω(t)
dt

dδ(t)
0

Δω  = (1 − τ  )Δω  +  P  − P  sin(δ  )t+1 2H
D

t 2H
τ

( m e,max
kτ

t )

δ  = δ  + τω  Δω  t+1 t 0 t

τ P  e,max
kτ

→ →
kτ
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Results without damping ( )

The fault is cleared after 214 ms (lower bound on the clearing time). As expected
from previous calculations, the system is safe.

t  = 0.214s ≤ CCTcl
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Results with damping ( )

The fault is cleared after 214 ms (lower bound on the clearing time). As expected
from previous calculations, the system is safe. The damping adds energy

dissipation, which allows the system to stabilize around 

t  = 0.214 ≤ CCTscl

δ  = 1.0282
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Results without damping ( )

The fault is cleared after 239 ms (upper bound on the clearing time). The machine
loses synchronism.

t  = 0.239s ≥ CCTcl
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Results with damping ( )

The fault is cleared after 239 ms (upper bound on the clearing time). The system is
stable thanks to the damping effect (energy dissipation).

t  = 0.239s ≥ CCTcl
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Dynamic Security Assessment
(DSA)

Based on fast time domain contingency simulations.

Study main stability issues such that: Voltage, Transient and Small-Signal (not

covered throughout this course).

Start from actual and future operating points.

Has to be visual for the operators  show the type of instability, where it

comes from and even possible solutions.

Main question that DSA should answer:

Imagine a set of major, yet credible contingencies, can the system resist such
events without jeopardizing its integrity?

If yes, then the states are determined secure  the system trajectories do not

bring the states inside an unsafe set.

→

→
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There are basically two types of analysis: off-line and on-line.

Off-line analysis

They are subjected to forecast errors  system security cannot be taken for

granted.

But they can be performed with no constraints on time (performed day-ahead
in order to set up a recommended operating schedule)

On-line analysis

Not prone to forecast errors since they are based on real-time information.

But need to be fast.

→

―――
[4] Kerin, U., Balaurescu, R., Lazar, F., Krebs, R., & Balasiu, F. (2012, July). Dynamic security assessment in system operation and planning—First experiences. In 2012 IEEE Power and Energy Society
General Meeting (pp. 1-6). IEEE. 38 / 43



Voltage stability assessment

Mainly static analyses.

Goal is to ensure a suf�cient load power margin.

List of contingencies: all single-component outages.

―――
[5] Lecture of last year presented by Prof. Louis Wehenkel https://bcornelusse.github.io/ELEC0447-analysis-power-systems/?p=lecture9.md#20 39 / 43
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Transient stability assessment

We want to avoid that:

Simulations with different three-phase short-circuits at various locations.

And with different clearing schemes!

Very time consuming computations.
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Nowadays
Integration of large off-shore wind parks, and PV systems without reinforcing

the network.

Large power plants are decommissioned, and conventional generators are no

longer accepted in urban areas.

New units are built far away from load centers.

Hard to build new lines because of public debates and environmental

constraints.

This leads to a weaker electrical system, more prone to stability issues.

There's a need for tools that can quickly perform security assessment to guarantee

a secure system.
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Few examples

For static analyses, we rely on power �ow solvers to estimate the state of the
system.

With increasing penetration of RES, probabilistic approaches are envisioned to

perform risk assessment.

But traditional power �ow solvers based on Newton-Raphson methods are too

slow.

Usage of AI tools to derive approximate solutions of the power �ow equations.

Donon, B., Clément, R., Donnot, B., Marot, A., Guyon, I., & Schoenauer, M. (2020).
Neural networks for power �ow: Graph neural solver. Electric Power Systems
Research, 189, 106547.
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Few examples (cont'd)

For dynamic analyses, we study the time-evolution of a power system
trajectory (e.g. internal angle in transient stability)

It requires solving the differential-algebraic equations for multiple scenarios
(different short-circuit locations, different clearing schemes).

Usage of reachability analysis techniques: gives the reach set, i.e., the set that
contains all possible system trajectories.

Chen, Y. C., & Dominguez-Garcia, A. D. (2012). A method to study the effect of
renewable resource variability on power system dynamics. IEEE Transactions on
Power Systems, 27(4), 1978-1989.
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The end.
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