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Overview

e Classification power system stability (Reminder)
e Principle of transient stability

e Swing equation

e Practical Example

e Dynamic Security Assessment

e Nowadays
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Classification power system
stability (Reminder)

e Proposed definition:

Power system stability is the ability of an electric power system, for a given
initial operating condition, to regain a state of operating equilibrium after
being subjected to a physical disturbance, with most system variables
bounded so that practically the entire system remains intact. [2]

Power system stability
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[1] Hatziargyriou, Nikos, et al. "Definition and classification of power system stability-revisited & extended." IEEE Transactions on Power Systems 36.4 (2020): 3271-3281. 2/43




Principle of transient stability
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. Consider_a generator bus connected through a transformer to a infinite bus
system (V' g = Vg is anideal voltage source).

e The mechanical power delivered through the shaftis P,,,.
e The electrical power delivered to the grid is denoted P..

¢ Insteady-state, the synchronous machine is modelled as a constant voltage
source E’ €79 behind its transient reactance X!

e Finally, X, is the leackage reactance of the transformer.
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Reminder

Consider a simple radial system.

Vs F5 + Qs P +JQr Vi
| jXL :
] ]
: I
Ii i:?E Load

Assuming no transmission-line losses:

| 0 _ Vee—d0R\ .
Ss = Ps+ jQs = V5635s (Vge ’ XVRe R) el

If we defined = dg — O, we have:

VsV,
Pr = Pg = ;{LR sin &
VsVgpcosd V3
Qr = —
Xz X
V52 VsVg cosd
Qs = —

X Xy,
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The electrical power P, is expressed as follows:

E'Vg

P, = sin(o
Xtr+XC,l—|_XL/2 ()

At equilibrium, P, = P,,,. For given reactances and voltage sources, one has:

Xy + X+ X1,/2
E'Vg

deq = arcsin (Pm
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When we increase P, the electrical angle at equlibrium also increases. The

maximum value is reached for 0. = 5.
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There exist TWO equilibrium points for P,, € [0, 10). Only ONE for P,, = 10,
and NONE for P,,, > 10.

Question: What happens if P,,, > 10?
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generator operation motor operation

In synchronous machines, the rotor rotates at the same angular speed as the
magnetic field produced by the stator. If we denote w,,, the rotor angular speed and

w, = 27 f, the synchronous speed, then w,,, = ws.

The field produced by the rotor and the stator tend to align. If they are not aligned,
an electromechanical torque is produced. This misalignment is represented by the
electrical angle. A greater angle induces a larger torque. BUT if the angle is too
large, the machine loses synchronism and the torque becomes O.

[2] Lectures given by Prof. Thierry Van Cutsem https://thierryvancutsem.github.io/home/courses.html 6/43



https://thierryvancutsem.github.io/home/courses.html

Consider this equation:

withE' = 1.1,V = 1, X,, =

X =[0.5,1,3].

= (.4 and various values of

7/43




Let us consider the following sequence of actions:

1. Pre-fault conditions; the impedance between generators and the infinite bus
systemis 70.5 pu.

2. During-fault conditions; one line is short-circuited, the impedance becomes 53
pu.

3. Post-fault conditions; the short-circuit is cleared by disconnecting a line, the
impedance becomes 71 pu.

For the system to be stable, the system has to stabilize at & = J, after the fault

occured.

We will now look at how the system moves from the equilibrium point d; to

equilibrium point 9
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Swing equation

Let us define the following quantities; J,,, is the moment-of-inertia of the
rotational system, T;,, is the mechanical torque, T} is the electrical torque, w,,, is
the rotor speed and ¢,,, the rotor angle (in mechanical radians). Using Newton's
Second Law, one has:

d*6,,
J

m” 142 =T, — T,

Multiplying both sides by w,,, (the rotor speed), one has:

425,
—n = Pn— P

ﬂ%LI;n
WinJm 1y

We then define

1 2
_1]hlajs nm k: . 2 >< 1 2
ngn = 2 gn, — [ g-m /S ] = [S]

Srated,gen kg ’ m2/33

where Wsyn m is the synchronous speed (in mechanical radians/s), Smted,gen the

nominal rated size of the generator. ngn is defined in seconds, and takes a value in

arange of 3-11s for turbo-alternators, and in a 1-2s range for hydro generators.
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One can write the swing equation by substituing .J,,, by ngn:

W, d6,,
(w2 ) 2ngnW — Pm,gen,pu T Pe,gen,pu

syn,m

where P, and P, are in per-unit of the generator MVA base. One can also write
the equation in the system base Ssystem:

Wy, d?s,,
( ) dt Pm,pu o Pe,pu

2
wsyn m

with
Srated
system

Finally, we make the reasonable assumption that w,,, = wWgyp m,and we express
everything in terms of electrical radians.

2H \ d?$
— Pm u Pe U
(wsyn ) dt2 Y Y

[3] Mohan, N. (2012). Electric power systems: a first course. John Wiley & Sons.
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What can we say about the swing equation?

e |f the mechanical power provided at the shaft P, is greater than the electrical
power transferred to the network P,, the machine accelerates

2
Ztg — di“’ > 0, where Aw is the deviation from the synchronous speed
Wsyn.-

e |t decelerates if the electrical power is greater than the mechanical power.

e The acceleration is proportional to the machine inertia H = time it takes for
the machine to reach its nominal speed if the mechanical power provided at
the shaftis Sy stem.

What is the inertia of PV panels?
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Transient stability using Equal-Area Criterion

2H \ d?6
— Pm u Pe U
(wsyn ) dt2 P P

Rearranging the terms and multiplying both sides by d¢ / dt:

Swing equation:

dé d’6 w do
2— —0 = el m,pu Pe w) 1,
dt dt? H (P ) dt

Applying change of variables 6 — 6, and integrating both sides between dp and an
arbitrary angle d:

0 2 )
do d-0 w
:2'___ T e Cit — 8y7l .13%1 U __'.Ijé U (i69
h/g; (: Cit (itZ :) jEI‘ 60 ( P P )

Assume d being an equilibrium point, i.e.dd /dt|s—s, = 0, we have:

ds\ > Wasyn g
., — Pm u_PeudH
() =5 [ B P
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ds\ 2 2 N :
The left term (%) — Aw? represents the kinetic energy of the machine at an
arbitrary angle 6* (with respect to the synchronous speed Wgyn) — rotational

kinetic energy: %sz with J the moment-of-inertia and w the angular speed.

Aslongas Py, ,, > P, ,,,the machine gains kinetic energy and accelerates. For
the system to stabilize, it must exist an angle d,,, at which the kinetic energy
becomes 0O, and thus:

)
/ (Popu — Popu) df = 0
)

0

Let us consider the following system; at time ¢ and angle ¢, a short-circuit occurs
and is cleared at time ¢t + t,; and angle d,; by tripping the line.

P
_ Pre-fault
5 — /.
Bus 1 X V=V 0 rf':::'? ,‘Afiusl-l‘ault
S B .
P 5
p /;EA' S B -~ \
. ., X /’ I) S Durling I‘uu]l:
Pm P'? J_—— | : | 1 1 _

] )
u lﬁ{]fi' hl"f' l%m amax i ‘,‘
(a) (b)
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For a stable system, we highlighted that:

)
/ (Pryu — Popu) d6 = 0
do

For our little example, one can write the same condition:

6cl 5m
/ (Pm,pu — Pe,fault,pu) do / (Pe,post—fault,pu — Pm,pu) dd =0
1)

50 cl
g o \ /
NV V

Area A Area B

During the first part (Area A), the machine accelerates. After the fault (Area B), the
machine decelerates and the net acceleration becomes 0. At angle 9,,,, there is still
a mismatch between the electrical power and the mechanical power, thus the
machine swings back (from 9,,, to d5).

re-fault

By ! i 14/43




Without any damping (kinetic energy losses), the system oscillates indefinitely
between angle d5 and 9,,,.

CUE
544
5649
544
524
509

& (degrees)

434
404
384

ELE
344
124
304

1] 0.5 1.5 2 25 3 is 4 45 5

f(8)

However, in a real system, the damping would cause the machine to settle down at
an angle d; (new equilibrium point).

Synchronous machines have damper windings . In perfect steady state, the
magnetic fields produced by both the stator and the rotor are fixed relative to the
rotor so thereis no current in the dampers. On the other hand, if the rotor moves
with respect to the magnetic field, the current induced in the dampers create a

damping torque according to Lenz's law.
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Critical Clearing Angle

Let us come back to our definition of stability for our little system:

5cl 5m
/ (Pm,pu - Pe,fault,pu) do — / (Pe,post—fault,pu — Pm,pu) dd =0
60 6cl

\ . 7 \ . 7
~ ~~

Area A Area B

What are the conditions to ensure there exists J,; such that Area A = Area B?

We introduce the concept of critical clearing angle d,..;. Past this point, Area A will

always be greater than Area B, such that the system cannot stabilize. We associate
the critical clearing time C'C'T  to the critical clearing angle, i.e. the maximum time

allowed to clear the fault before the system gets unstable.
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Visual representation

F

re-tault

_ = TF-E == post-fault
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Mathematical formulation

6cct 5mam
/ (Pm,pu — Pe,fault,pu) do — / (Pe,post—fault,pu — Pm,pu) dd =0
50 5cct

\ 7 \ 7
Ve aVa

Area A Area B

One has to determine the angle d,,,,, such that Pe,post_fault = P,,,and the angle
dg suchthat P, ;v fquit = Py Then solving this equation gives .. Finally,
using the swing equation , one can determine the critical clearingtime CC'T’, i.e.
the time needed to reach the angle d ...
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Practical Example

Let us consider the following system:

E'/s Eps0”

and the following data:

1 1
X;=03,X, =05X;,=1,X9 =0.5,Xy = 6,X23 ~ 3

and

E, =18 Ep = 1e7°
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Equivalent

We can derive the following equivalent:

Xr
SRR

E' /6 EpZ0°

where

X (X1 + Xog + Xo3) _ 13
Xo1 + Xoo + Xoz + Xj .

Xr =X + X+
The power transfer from the machine to the infinite-bus system takes the following
form:
B E'Eg

T

P sin
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Find £/, P.and P,,

1. Current from E_'t to E’B

2. It—>B is the same as the one from E' to Et
E' = jX)I,.p+ E, = 1.05095¢/382057/180
3.Find P,

b 1.05095 1 sin(38.2057/180)
°© 1.3

= 0.5

4. Initially, the system is at equilibrium.
P,=P. =05

In the following, we will compute the maximum power outputs for three different
conditions: Pre-fault, During-Fault and Post-Fault. It will allow us to determine the
3 different P — ¢ curves.
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Pre-fault condition

We compute the maximum power output while assuming £’ does not change.

If the transient stability study lasts a second or less, it is reasonable to consider, as a
first-order approximation, that the exciter of the synchronous machine cannot
respond in such short amount of time. Hence, E’ does not change

Maximum power output:
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During-fault condition

A short-circuit occurs between lines 22 and 23. The circuit topology changes and is
depicted below.

E'/5 Egs0°

E'/§
Ep/0°

il
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We can derive the following Thevenin's equivalent

Xrn X
Epy, Ep/0°
where
Ey = FE' Xa + Xz — (.478¢1%8-206/180
Xqg+ X + Xo1 + Xo2
and
1
Xth — 1 1 — 0364
X+ Xer T Xo1+X22
and then get the maximum power output:
A EwE
Peagr = th=8 0.35

X + X
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Post-fault condition
The line 2 is tripped to clear the short-circuit.

The impedance of the path connecting the machine to the infinite-bus system
becomes X + X, + X; = 1.8.

The maximum power output is:

. E'Eg

Pe — — 0.584
P X+ X + X
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The final P — 6 curves are shown here under:

| [ T I T
0.8 _
0.6 _
E ______________
T) 0.4 ]
A
Pre-Fault
0.2 During-Fault ]
Post-Fault
0.0 . T T )
d [rad]
with
. P . P,
d; = arcsin T | =0.667,05 = arcsin | —— | = 1.028, §,pez = 2.114
Pe,pf

Pe,bf




Critical clearing angle d ..

5cct ama:c
/ (Pm,pu — Pe,fault,pu) db = / (Pe,post—fault,pu — Pm,pu) do
0

J 60 P N cct Y
~\~ ~\~

Area A Area B

Area A

5cct 5cct
/ (Pm,pu _ Pe,fault,pu) df = Pm,pu (5cct _ 50) - / Pe,df sin 60d6
(50 50

A

— Pm,pu (5cct — 50) + Pe,df (COS 5cct — COS 50)

AreaB

6maw 6maw
/ (Peptpu — Prpu) @0 = Py py (0cet — Omaz) — / P, ,¢sin6do
J J,

cct cct

= Pm,pu (5CCt - 5maaj) -+ pe,pf (COS 5cct — COS 5maw)
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Equal-area criterion

Py (Omaz — 60) + I—A’e,df (cos .t — cOS ) = I—A’e,pf (cOS et — €OS Gpnaz)

Area A = Area B

We can find out the critical clearing angle.

Prpu (00 — Opmaz) + Pe,df cos 0y — Pe,pf COS Oy

COS Oppt —

P — Pepy
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! | | | I |
0.8 i
0.6 |
£) A2 s N
TJ 0.4 .
n i
- — Pre-Fault
0.2 i —— During-Fault ]
——— Post-Fault
0.0 1=~ Fm
L L L | L | 1 P 1 PR | 1 1 1 1
0 01 O2 5 5max% T
 [rad]

The purple star corresponds to d..» — 0.8938, and the dashed purple line shows
the evolution of the angle d. Even without damping, the system stabilizes at
§ = 0,4, since the kinetic energy reaches 0 at that point (Aw? = 0)




Estimation of the critical clearing time CC'T

In order to find the critical clearing time, one would need to solve the swing

equation:
2H \ d?§(t)
=P — P, (0(t

where P, ;,,(6(t)) is a non-linear function depending on 6;

P, ,,(6(t)) = K(t)sin(d(¢)), and with K changing non-continuously with time.
We would need to solve a non-linear differential equation, which is not an easy
task!

d*5(t)

Thus, let us assume that the acceleration 7 is constant over time. We have:

CCT?

5cct — 51 + A(UO CCT+ a

where a is the constant acceleration and Awy the initial speed assumed to be O.
Let us assume two cases:

1. We pick the maximum acceleration for angles in [01, Ot .

2. We pick the minimum acceleration for angles in [J1, cct)- s




From the following figure

0.8 -
0.6 | .
=
= 0.4 |
ol
F — Pre-Fault
0.2 i —— During-Fault ]
— Post-Fault
0.0
n N N 1 " ol n " P N | 1 N N " N
0 51 o2 g 5maz%’ T

it is clear that the acceleration is maximum for & = &1, and minimum for & = .

for§ € [01, dcct] (larger power mismatch when § = &; and smaller for & = J.).

We have:

A

W .
Amin = zt}y_; (Pm,pu — Pe,df S1I1 dcct)

w - .
Amazr — 281-_y; (Pm,pu — Pe,df S1n 51)
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With H = 4.5s, we can derive a lower and an upper bound for the critical clearing

time CC'T.

cor \/ 2 (beet — 1) _ \/ 2(0.8038 — 0.667) _ ..

Qi 7.93
2 _ 2 (0. —0.
COT. — (et — 61) B \/ (0.8938 — 0.667) it
Amin 9.89

If the actual clearing time is denoted t*, we can conclude that:

1.1ft* > CCT,pue, the system is unsafe!
2.1ft* < CCT,,;,, the system is safe!

3.fCCT,,;, < t* < CCT,,,,, we have no guarantee if the system is safe or
not.
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Extension on dynamics

Swing equations with damping coefficient

dAw(t) 1 :
Y| (P, — Peymaz(t) sin(6(t)) — DAw(t))
do(t
% = woAw(t)
Euler discretization
Awiy = (1 — 72 Ay + = (B — P sin(5,))
W11 = T2H Wi 9 H m e,maz SII1| O¢

Ot+1 = 0t + TwoAwy

where T is the time step and where we explicitly denote that Pf::nam is changing
over time in a discretize fashion (pre-fault— during-fault—post-fault) through the

superscript k.
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Results without damping (t,; = 0.214s < CCT)

0.005 | .

0.000

Awyr

—0.005

Time [s]

The fault is cleared after 214 ms (lower bound on the clearing time). As expected
from previous calculations, the system is safe.




Results with damping ({,; = 0.214 < CCT's)

0.005

r

3
<1 0.000

15 b

Time [s]

The fault is cleared after 214 ms (lower bound on the clearing time). As expected
from previous calculations, the system is safe. The damping adds energy
dissipation, which allows the system to stabilize around 6o = 1.028




Results without damping (t,; = 0.239s > C'CT)

0.4 —

Awy

0.2

0.0 b

500 |

250

Time [s]

The fault is cleared after 239 ms (upper bound on the clearing time). The machine
loses synchronism.




Results with damping ({,; = 0.239s > CC'T)

0.005 |

Wr

d0.000

—0.005 k

1.0 f

Time [s]

The fault is cleared after 239 ms (upper bound on the clearing time). The system is
stable thanks to the damping effect (energy dissipation).




Dynamic Security Assessment
(DSA)

e Based on fast time domain contingency simulations.

e Study main stability issues such that: Voltage, Transient and Small-Signal (not
covered throughout this course).

e Start from actual and future operating points.

e Has to be visual for the operators — show the type of instability, where it
comes from and even possible solutions.

Main question that DSA should answer:

Imagine a set of major, yet credible contingencies, can the system resist such
events without jeopardizing its integrity?

If yes, then the states are determined secure — the system trajectories do not
bring the states inside an unsafe set.
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There are basically two types of analysis: off-line and on-line.

Off-line analysis

e They are subjected to forecast errors — system security cannot be taken for
granted.

e But they can be performed with no constraints on time (performed day-ahead
in order to set up a recommended operating schedule)

On-line analysis
e Not prone to forecast errors since they are based on real-time information.

e But need to be fast.

[4] Kerin, U., Balaurescu, R., Lazar, F., Krebs, R., & Balasiu, F. (2012, July). Dynamic security assessment in system operation and planning—First experiences. In 2012 IEEE Power and Energy Society
General Meeting (pp. 1-6). IEEE. 38/43




Voltage stability assessment

e Mainly static analyses.
e Goalisto ensure a sufficient load power margin.

e List of contingencies: all single-component outages.

Numéro état 4
Num.Variante 6

. . Pre-dist.
Consignations (CHAG61COR) /
Charge 4927 MW+1502 Mvar
Compensation 285 Post-dist. \
Sites Prod MW) Q (Mvar) Rés. (Mvar) \\ =
Cordemais 548 144 237 7
Flamanville 0 0 0 /
Chinon 1840 540 794
Cheviré 0 125 414 Severity
TACs 0 0 0
St. Laurent ? ? ?
Blayais 2500 650 1558
Marge de P.C]  1002.MW+308.0Mvar LPM > 255 MW

[5] Lecture of last year presented by Prof. Louis Wehenkel https://bcornelusse.github.io/ELEC0447-analysis-power-systems/?p=lecture9.md#20
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Transient stability assessment

e We want to avoid that:

Awy
o
[\)

|

500 |

250

4]

Time [s]

e Simulations with different three-phase short-circuits at various locations.
e And with different clearing schemes!

e Very time consuming computations.




Nowadays

e Integration of large off-shore wind parks, and PV systems without reinforcing
the network.

e Large power plants are decommissioned, and conventional generators are no
longer accepted in urban areas.

e New units are built far away from load centers.

e Hard to build new lines because of public debates and environmental
constraints.

This leads to a weaker electrical system, more prone to stability issues.

There's a need for tools that can quickly perform security assessment to guarantee
a secure system.
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Few examples

e For static analyses, we rely on power flow solvers to estimate the state of the
system.

e With increasing penetration of RES, probabilistic approaches are envisioned to
perform risk assessment.

e But traditional power flow solvers based on Newton-Raphson methods are too
slow.

e Usage of Al tools to derive approximate solutions of the power flow equations.

Donon, B., Clément, R., Donnot, B., Marot, A., Guyon, I., & Schoenauer, M. (2020).
Neural networks for power flow: Graph neural solver. Electric Power Systems
Research, 189, 106547.

102
10*

10° + +
10-2

10~ +

1073

a

® proposed GNS
01 e Newton-Raphson
® DC

% of error compared to Newton Raphson

10°* 1073 1072
Computation time per power flow (s) 42/43




Few examples (cont'd)

e For dynamic analyses, we study the time-evolution of a power system
trajectory (e.g. internal angle in transient stability)

¢ It requires solving the differential-algebraic equations for multiple scenarios
(different short-circuit locations, different clearing schemes).

e Usage of reachability analysis techniques: gives the reach set, i.e., the set that
contains all possible system trajectories.

Chen, Y. C., & Dominguez-Garcia, A. D. (2012). A method to study the effect of
renewable resource variability on power system dynamics. IEEE Transactions on
Power Systems, 27(4), 1978-1989.

g 1 ; I
01 0 01 02 03 04 05 06 001 0 01 02 03 04 05 06
8 [rad] 0 [rad]
(a) (b)
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The end.
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